LEARN.

ADACORE.COM

LEARN.

ADACORE.COM

What's New in Ada 2022
Release 2025-06

Maxim Reznik

Jun 27, 2025

CONTENTS:

1 Introduction 3
1.1 References e e e e e e 3
2 'Image attribute for any type 5
2.1 'Image attributeforavalue 5
2.2 'Image attribute foranytype. 5
2.3 References e e e e e e 6
3 Redefining the 'Image attribute 7
3.1 What's the Root Buffer Type? 8
3.2 Outdated draft implementation 8
3.3 ReferenCes i e e e e e e 8
4 User-Defined Literals 9
4.1 Turn Adainto JavaScript e 10
4.2 ReferencCes v o i i e e e e e e e 11
5 Advanced Array Aggregates 13
5.1 Squarebrackets. e 13
5.2 Iterated Component Association o e 14
5.3 References o o e e e e e e e e e e 15
6 Container Aggregates 17
6.1 ReferenCes i e e e e e e e e 21
7 Delta Aggregates 23
7.1 Delta aggregateforrecords. e e 23
7.2 Delta aggregate forarrays i e e 23
7.3 References e e e e e e e e 24
8 Target Name Symbol (@) 25
8.1 Alternatives o e e e e e e e e 27
8.2 References e e e e e e e e e 27
9 Enumeration representation 29
9.1 Literal positions e e 29
9.2 Representationvalues 30
9.3 Before Ada 2022 e e e e e e 31
9.4 ReferenCeS v v v e e e e e e e 32
10Big Numbers 33
10.1 Big Integers o e e e e e 33
10.2 Tiny RSA implementation e e 33
10.3 Big Reals o e e e e e e e e 35
10.4 References . . . v v v v e e e e e e e e e e e e e e 35

1llinterfacing C variadic functions
11.1 References o i e e e

What's New in Ada 2022

Copyright © 2022 - 2023, AdaCore

This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this

pagel

This course presents an overview of the new features of the latest Ada 2022 standard.

This document was written by Maxim Reznik and reviewed by Richard Kenner.

© Note

The code examples in this course use an 80-column limit, which is a typical limit for Ada
code. Note that, on devices with a small screen size, some code examples might be
difficult to read.

O Note

Each code example from this book has an associated "code block metadata", which
contains the name of the "project" and an MD5 hash value. This information is used to
identify a single code example.

You can find all code examples in a zip file, which you can download from the learn
website?. The directory structure in the zip file is based on the code block metadata.
For example, if you're searching for a code example with this metadata:

* Project: Courses.Intro_To Ada.Imperative_Language.Greet
* MD5: cba89a34b87c9dfa71533d982d05e6ab
you will find it in this directory:

projects/Courses/Intro To Ada/Imperative Language/Greet/
cba89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:
1. Unpack the zip file;

Go to target directory;

Start GNAT Studio on this directory;

Build (or compile) the project;

A oo BN

Run the application (if a main procedure is available in the project).

1 http://creativecommons.org/licenses/by-sa/4.0
2 https://learn.adacore.com/zip/learning-ada_code.zip

CONTENTS: 1

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0
https://learn.adacore.com/zip/learning-ada_code.zip
https://learn.adacore.com/zip/learning-ada_code.zip

What's New in Ada 2022

2 CONTENTS:

CHAPTER
ONE

INTRODUCTION

This is a collection of short code examples demonstrating new features of the Ada 2022
Standard?® as they are implemented in GNAT Ada compiler.

To use some of these features, you may need to use a compiler command line switch or
pragma. Compilers starting with GNAT Community Edition 2021% or GCC 11° use pragma
Ada 2022; orthe -gnat2022 switch. Older compilers use pragma Ada 2020; or -gnat2020.
To use the square brackets syntax or 'Reduce expressions, you need pragma Exten-
sions Allowed (0n); orthe -gnatX switch.

1.1 References

e Draft Ada 2022 Standard®
e Ada 202x support in GNAT’ blog post

3 http://www.ada-auth.org/standards/22aarm/htmI/AA-TTL.html
4 https://blog.adacore.com/gnat-community-2021-is-here

5 https://gcc.gnu.org/gcc-11/

6 http://www.ada-auth.org/standards/22aarm/html/AA-TTL.htm|
7 https://blog.adacore.com/ada-202x-support-in-gnat

http://www.ada-auth.org/standards/22aarm/html/AA-TTL.html
http://www.ada-auth.org/standards/22aarm/html/AA-TTL.html
https://blog.adacore.com/gnat-community-2021-is-here
https://gcc.gnu.org/gcc-11/
http://www.ada-auth.org/standards/22aarm/html/AA-TTL.html
https://blog.adacore.com/ada-202x-support-in-gnat

What's New in Ada 2022

4 Chapter 1. Introduction

© ©® N o U A W N R

=R e
N P O

CHAPTER
TWO

'IMAGE ATTRIBUTE FOR ANY TYPE

O Note

Attribute 'Image for any type is supported by
* GNAT Community Edition 2020 and latter
* GCC11

2.1 'Image attribute for a value

Since the publication of the Technical Corrigendum 12 in February 2016, the 'Image at-
tribute can now be applied to a value. So instead of My Type'Image (Value), you can just
write Value'Image, as long as the Value is a name®. These two statements are equivalent:

Ada.Text I0.Put Line (Ada.Text I0.Page Length'Image);

Ada.Text I0.Put Line
(Ada.Text_IO.Count'Image (Ada.Text IO.Page Length));

2.2 'Image attribute for any type

In Ada 2022, you can apply the 'Image attribute to any type, including records, arrays,
access types, and private types. Let's see how this works. We'll define array, record, and
access types and corresponding objects and then convert these objects to strings and print
them:

Listing 1: main.adb
with Ada.Text I0;

procedure Main is
type Vector is array (Positive range <>) of Integer;

V1l : aliased Vector := [1, 2, 3];
type Text Position is record
Line, Column : Positive;

end record;

: constant Text Position := (Line => 10, Column => 3);
(continues on next page)

8 https://reznikmm.github.io/ada-auth/rm-4-NC/RM-0-1.html
9 https://reznikmm.github.io/ada-auth/rm-4-NC/RM-4-1.htmI#50091

https://reznikmm.github.io/ada-auth/rm-4-NC/RM-0-1.html
https://reznikmm.github.io/ada-auth/rm-4-NC/RM-4-1.html#S0091

13
14
15
16
17
18
19
20
21
22
23

What's New in Ada 2022

b

e

type Vector_Access is access all Vector;
: constant Vector Access := V1'Access;

egin
Ada.Text I0.Put Line (V1'Image);
Ada.Text _I0.Put Line (Pos'Image);
Ada.Text IO.New Line;
Ada.Text I0.Put Line (V1 Ptr'Image);
nd Main;

Code block metadata

)
M

roject: Courses.Ada 2022 Whats New.Image Attribute
D5: ¢58d3133c45d780305a2b5c88d159764

Runtime output

[
(

1, 2, 3]

LINE => 10,
COLUMN => 3)

(access 7ffffae8d2e8)

$
$

gprbuild -gq -P main.gpr
Build completed successfully.
./main

[1, 2, 3]

(LINE == 10,

COLUMN => 3)

(access 7fff64b23988)

(continued from previous page)

Note the square brackets in the array image output. In Ada 2022, array aggregates could

b

e written this way (page 13)!

2.3 References

e ARM 4.10 Image Attributes!®
e Al12-0020-11

10 http://www.ada-auth.org/standards/22aarm/html/AA-4-10.html
11 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ail2s/ail2-0020-1.txt

6

Chapter 2.

'Image attribute for any type

http://www.ada-auth.org/standards/22aarm/html/AA-4-10.html
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0020-1.txt

©W @ N U A W N e

WONON NN NNNNNNR B B 2 BB H e e e
S © ® N o U B W N B O L ® N O U A~ W N B O

CHAPTER
THREE

REDEFINING THE 'IMAGE ATTRIBUTE

In Ada 2022, you can redefine 'Image attribute for your type, though the syntax to do this
has been changed several times. Let's see how it works in GNAT Community 2021.

O Note

Redefining attribute 'Image is supported by
* GNAT Community Edition 2021 (using Text Buffers)
* GNAT Community Edition 2020 (using Text Output.Utils)
* GCC 11 (using Text Output.Utils)

In our example, let's redefine the ' Image attribute for a location in source code. To do this,
we provide a new Put_Image aspect for the type:

Listing 1: main.adb

with Ada.Text I0;
with Ada.Strings.Text Buffers;

procedure Main is

type Source_Location is record
Line : Positive;
Column : Positive;
end record
with Put Image => My Put Image;

procedure My Put Image
(Output : in out Ada.Strings.Text Buffers.Root Buffer Type'Class;
Value : Source Location);

procedure My Put Image
(Output : in out Ada.Strings.Text Buffers.Root Buffer Type'Class;
Value : Source Location)
is
: constant String
: constant String
: constant String
Line (2 .. Line'lLast) &
begin
Output.Put (Result);
end My Put Image;

Value.Line'Image;
Value.Column'Image;

" & Column (2 .. Column'Last);

: constant Source Location := (Line => 10, Column => 1);

begin
(continues on next page)

What's New in Ada 2022

(continued from previous page)

Ada.Text I0.Put Line (Line 10'Image);
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Image Redefine
MD5: 4c77a3589eaba3a4clb70200913ad6b8

Runtime output

10:1

3.1 What's the Root_Buffer Type?

Let's see how it's defined in the Ada.Strings.Text Buffers package.

type Root_Buffer_Type is abstract tagged limited private;

procedure Put
(Buffer : in out Root Buffer_ Type;
Item : in String) is abstract;

In addition to Put, there are alsoWide Put, Wide Wide Put, Put UTF 8, Wide Put UTF_16.
And also New Line, Increase Indent, Decrease Indent.

3.2 Outdated draft implementation

GNAT Community Edition 2020 and GCC 11 both provide a draft implementation that's
incompatible with the Ada 2022 specification. For those versions, My Put Image looks like:

procedure My Put Image
(Sink : in out Ada.Strings.Text OQutput.Sink'Class;
Value : Source Location)
is
: constant String
: constant String
: constant String
Line (2 .. Line'lLast) &
begin
Ada.Strings.Text OQutput.Utils.Put UTF 8 (Sink, Result);
end My Put Image;

Value.Line'Image;
Value.Column'Image;

' & Column (2 .. Column'lLast);

3.3 References

e ARM 4.10 Image Attributes?!?
« Al12-0020-113
» Al12-0384-214

12 http://www.ada-auth.org/standards/22aarm/html/AA-4-10.html
13 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Al12s/AI12-0020-1.TXT
14 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ail2s/Al12-0384-2.TXT

8 Chapter 3. Redefining the 'Image attribute

http://www.ada-auth.org/standards/22aarm/html/AA-4-10.html
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0020-1.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/AI12-0384-2.TXT

©W @ N U A W N e

N N N N NN B B B B B B el e
O B W N B O © ® N O U A W N B O

CHAPTER
FOUR

USER-DEFINED LITERALS

O Note

User-defined literals are supported by
* GNAT Community Edition 2020
* GCC11

In Ada 2022, you can define string, integer, or real literals for your types. The compiler will
convert such literals to your type at run time using a function you provide. To do so, specify
one or more new aspects:

* Integer Literal
* Real Literal
* String Literal
For our example, let's define all three for a simple type and see how they work. For sim-
plicity, we use a Wide Wide String component for the internal representation:
Listing 1: main.adb

with Ada.Wide Wide Text I0;
with Ada.Characters.Conversions;

procedure Main is

type My _Type (Length : Natural) is record
Value : Wide Wide String (1 .. Length);

end record
with String Literal => From String,
Real Literal => From Real,
Integer Literal => From Integer;

function From String (Value : Wide Wide String) return My Type is
((Length => Value'lLength, Value => Value));

function From Real (Value : String) return My Type is
((Length => Value'lLength,
Value => Ada.Characters.Conversions.To Wide Wide String (Value)));

function From Integer (Value : String) return My Type renames From Real;

procedure Print (Self : My Type) is
begin
Ada.Wide Wide Text IO.Put Line (Self.Value);
end Print;
(continues on next page)

26
27
28
29
30
31
32

© ©® N o U A W N R

N N NN B B R R R e H B e
W N B © © ® N O U0 & W N B O

What's New in Ada 2022

(continued from previous page)

begin

Print ("Test ""string""");
Print (123);

Print (16#DEAD BEEF#);
Print (2.99 792 458e+8);
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.User Defined Literals
MD5: 755732418174c841bd88a8330cdc3e0l

Runtime output

Test "string"
123

16#DEAD BEEF#
2.99 792 458e+8

As you see, real and integer literals are converted to strings while preserving the formatting
in the source code, while string literals are decoded: From String is passed the specified
string value. In all cases, the compiler translates these literals into function calls.

4.1 Turn Ada into JavaScript

Do you know that '5'+3 in JavaScript is 537

> '5'+3
I53I

Now we can get the same result in Ada! But before we do, we need to define a custom +
operator:

Listing 2: main.adb

with Ada.Wide Wide Text I0;
with Ada.Characters.Conversions;

procedure Main is

type My _Type (Length : Natural) is record
Value : Wide Wide String (1 .. Length);
end record
with String Literal => From String,
Real Literal => From Real,
Integer Literal => From Integer;

function "+" (Left, Right : My Type) return My Type is
(Left.Length + Right.Length, Left.Value & Right.Value);

function From String (Value : Wide Wide String) return My Type is
((Length => Value'lLength, Value => Value));

function From Real (Value : String) return My Type is
((Length => Value'Length,
Value => Ada.Characters.Conversions.To Wide Wide String (Value)));

function From Integer (Value : String) return My Type renames From Real;
(continues on next page)

10 Chapter 4. User-Defined Literals

24
25
26
27
28
29
30
31
32

What's New in Ada 2022

procedure Print (Self : My Type) is

begin
Ada.Wide Wide Text IO.Put Line (Self.Value);
end Print;
begin
Print ("5" + 3);
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.User Defined Literals JS
MD5: 2d6eaf2dlb5bf560a90d4c6e491a2495

Runtime output

53

(continued from previous page)

Jokes aside, this feature is very useful. For example it allows a "native-looking API" for big

integers (page 33).

4.2 References

* ARM 4.2.1 User-Defined Literals!®
e Al12-0249-116
e Al12-0342-117

15 http://www.ada-auth.org/standards/22rm/htmI|/RM-4-2-1.html
16 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Al12s/Al12-0249-1.TXT
17 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Al12s/Al12-0342-1.TXT

4.2. References

11

http://www.ada-auth.org/standards/22rm/html/RM-4-2-1.html
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0249-1.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0342-1.TXT

What's New in Ada 2022

12 Chapter 4. User-Defined Literals

© ©® N o U A W N R

e
= o

CHAPTER
FIVE

ADVANCED ARRAY AGGREGATES

O Note

These array aggregates are supported by
* GNAT Community Edition 2020
* GCC11

5.1 Square brackets

In Ada 2022, you can use square brackets in array aggregates. Using square brackets
simplifies writing both empty aggregates and single-element aggregates. Consider this:

Listing 1: show _square_brackets.ads
package Show_Square_Brackets is

type Integer_Array is array (Positive range <>) of Integer;

(1 .. 0= <),
[1;

0ld Style Empty : Integer Array :
New Style Empty : Integer Array :

0ld Style One Item : Integer Array
New Style One Item : Integer Array :

(1 =>5);
[51;

end Show Square Brackets;

Code block metadata

Project: Courses.Ada 2022 Whats New.Square Brackets
MD5: 2914b9435684aleecd2567548969a3ed

© Short summary for parentheses and brackets

* Record aggregates use parentheses
» Container aggregates (page 17) use square brackets

e Array aggregates can use both square brackets and parentheses, but parentheses
usage is obsolescent

13

© ©® N o U A W N R

I R T e <
S © ® N o U B W N = O

21

What's New in Ada 2022

5.2 Iterated Component Association

There is a new kind of component association:

Vector : Integer Array := [for J in 1 .. 5 =>] * 2];

This association starts with for keyword, just like a quantified expression. It declares an
index parameter that you can use in the computation of a component.

Ilterated component associations can nest and can be nested in another association (iter-
ated or not). Here we use this to define a square matrix:

Matrix : array (1 .. 3, 1 .. 3) of Positive :=
[for Jin 1 .. 3 =>
[for Kin 1 .. 3 =>J * 10 + K]];

Iterated component associations in this form provide both element indices and values, just
like named component associations:

Data : Integer Array (1 .. 5) :=
[for J in 2 .. 3 =1, 5 == 5, others => 0];

Here Data contains (0, 2, 3, 0, 5),not (2, 3, 5, 0, 0).

Another form of iterated component association corresponds to a positional component
association and provides just values, but no element indices:

Vector 2 : Integer Array := [for X of Vector => X / 2];

You cannot mix these forms in a single aggregate.
It's interesting that such aggregates were originally proposed more than 25 years ago!
Complete code snippet:

Listing 2: show_iterated_component_association.adb
with Ada.Text I0;

procedure Show Iterated Component Association is
type Integer Array is array (Positive range <>) of Integer;

0ld Style Empty : Integer Array :
New Style Empty : Integer Array :

(1 ..0=><>);
[1;

0ld Style One Item : Integer Array
New Style One Item : Integer Array

(1 =>5);
[5];

: constant Integer Array := [for J in 1 .. 5 =>] * 2];

: constant array (1 .. 3, 1 .. 3) of Positive :=
[for Jin 1 .. 3 =>
[for Kin 1 .. 3 =>3J * 10 + K]1;

: constant Integer Array (1 .. 5) :=
[for Jin 2 .. 3 =], 5 == 5, others => 0];

: constant Integer Array := [for X of Vector => X / 2];
begin
Ada.Text I0.Put Line (Vector'Image);
Ada.Text I0.Put Line (Matrix'Image);
Ada.Text IO0.Put Line (Data'Image);

(continues on next page)

14 Chapter 5. Advanced Array Aggregates

What's New in Ada 2022

(continued from previous page)
27 Ada.Text I0.Put Line (Vector 2'Image);
26 end Show Iterated Component Association;

Code block metadata

Project: Courses.Ada 2022 Whats New.Iterated Component Association
MD5: 9bc822b59¢2c423019917728aab75c69

Runtime output

[11, 12, 13],
[21, 22, 23],

[31, 32, 33]]

5.3 References

« ARM 4.3.3 Array Aggregates!®
e Al12-0212-119
» Al12-0306-12°

18 http://www.ada-auth.org/standards/22aarm/html/AA-4-3-3.html
19 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Al12s/AI12-0212-1.TXT
20 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Al12s/AI12-0306-1.TXT

5.3. References 15

http://www.ada-auth.org/standards/22aarm/html/AA-4-3-3.html
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0212-1.TXT
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0306-1.TXT

What's New in Ada 2022

16 Chapter 5. Advanced Array Aggregates

© @ N U A W N R

P~ e e O i <
© ® N o U A W N B O

CHAPTER
SIX

CONTAINER AGGREGATES

O Note

Container aggregates are supported by
* GNAT Community Edition 2021
* GCC11

Ada 2022 introduces container aggregates, which can be used to easily create values for
vectors, lists, maps, and other aggregates. For containers such as maps, the aggregate
must use named associations to provide keys and values. For other containers it uses
positional associations. Only square brackets are allowed. Here's an example:

Listing 1: main.adb

with Ada.Text I0;

with Ada.Containers.Vectors;

with Ada.Containers.Ordered Maps;
procedure Main is

package Int Vectors is new Ada.Containers.Vectors
(Positive, Integer);

: constant Int Vectors.Vector := [1, 2, 3];

package Float_Maps is new Ada.Containers.Ordered_Maps
(Integer, Float);

: constant Float Maps.Map := [-10 => 1.0, 0 => 2.5, 10 => 5.51];
begin
Ada.Text I0.Put Line (X'Image);

Ada.Text IO.Put Line (Y'Image);
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Container Aggregates 1
MD5: 317c252582f75f248a154bd843388aaa

Runtime output

(1, 2, 3]

[-16 => 1.00000E+00, 0O => 2.50000E+00, 10 => 5.51000E+00]

17

© ©® N o U A W N R

W W W W W www N NNDNNNNNRNN-RERRBR B B B B B B B
N o R W N B O © ® N0 U R WN PR O O ©® N o0 U A W N H O

© N O U A W N

What's New in Ada 2022

At run time, the compiler creates an empty container and populates it with elements one by
one. If you define a new container type, you can specify a new Aggregate aspect to enable
container aggregates for your container and let the compiler know what subprograms to
use to construct the aggregate:

Listing 2: main.adb
procedure Main is
package JSON is

type JSON_Value is private
with Integer Literal => To JSON Value;

function To JSON Value (Text : String) return JSON Value;

type JSON_Array is private
with Aggregate => (Empty => New_JSON Array,
Add Unnamed => Append);

function New JSON Array return JSON Array;

procedure Append
(Self : in out JSON_Array;
Value : JSON Value) is null;

private
type JSON_Value is null record;
type JSON_Array is null record;

function To JSON Value (Text : String) return JSON_ Value
is (null record);

function New JSON Array return JSON Array is (null record);
end JSON;

List : JSON.JSON Array := [1, 2, 31;

-- Equivalent old initialization code
List := JSON.New JSON Array;
JSON.Append (List, 1);
JSON.Append (List, 2);
JSON.Append (List, 3);

end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Container Aggregates 2
MD5: d930702bed4e6b4836afab082e8abe633

The equivalent for maps is:

Listing 3: main.adb

procedure Main is
package JSON is
type JSON Value is private
with Integer Literal => To JSON Value;

function To JSON Value (Text : String) return JSON Value;

(continues on next page)

18 Chapter 6. Container Aggregates

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

© ©® N o U A W N R

e L e <
® N o U A W N R~ O

What's New in Ada 2022

(continued from previous page)
type JSON_Object is private
with Aggregate => (Empty => New_ JSON Object,
Add Named => Insert);

function New JSON Object return JSON Object;

procedure Insert
(Self : in out JSON Object;
Key : Wide Wide String;
Value : JSON Value) is null;

private
type JSON_Value is null record;
type JSON_Object is null record;

function To JSON Value (Text : String) return JSON Value
is (null record);

function New JSON Object return JSON Object is (null record);
end JSON;

Object : JSON.JSON Object := ["a" => 1, "b" => 2, "c" => 3];

-- Equivalent old initialization code
Object := JSON.New JSON Object;
JSON.Insert (Object, "a", 1);
JSON.Insert (Object, "b", 2);
JSON.Insert (Object, "c", 3);

end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Container Aggregates 3
MD5: ¢39c651e3e2f48c515c87c4cc6b979e9

You can't specify both Add Named and Add_Unnamed subprograms for the same type. This
prevents you from defining JSON_Value with both array and object aggregates present. But
we can define conversion functions for array and object and get code almost as dense as
the same code in native JSON. For example:

Listing 4: main.adb

procedure Main is

package JSON is
type JSON_Value is private
with Integer Literal => To Value, String Literal => To Value;

function To Value (Text : String) return JSON Value;
function To Value (Text : Wide Wide String) return JSON Value;

type JSON_Object is private
with Aggregate => (Empty => New JSON Object,
Add Named => Insert);

function New JSON Object return JSON Object;

procedure Insert
(Self : in out JSON Object;
Key : Wide Wide String;
(continues on next page)

19

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

61
62
63
64
65
66
67
68
69
70
71
72
73

What's New in Ada 2022

(continued from previous page)
Value : JSON Value) is null;

function From Object (Self : JSON Object) return JSON Value;

type JSON_Array is private
with Aggregate => (Empty => New JSON Array,
Add_Unnamed => Append);

function New JSON Array return JSON Array;

procedure Append
(Self : in out JSON Array;
Value : JSON Value) is null;

function From Array (Self : JSON Array) return JSON Value;

private
type JSON Value is null record;
type JSON_Object is null record;
type JSON_Array is null record;

function To Value (Text : String) return JSON Value is
(null record);

function To Value (Text : Wide Wide String) return JSON Value is
(null record);

function New JSON Object return JSON Object is
(null record);

function New JSON Array return JSON Array is
(null record);

function From Object (Self : JSON Object) return JSON Value is
(null record);

function From Array (Self : JSON Array) return JSON Value is
(null record);

end JSON;

function "+" (X : JSON.JSON Object) return JSON.JSON Value
renames JSON.From Object;

function "-" (X : JSON.JSON Array) return JSON.JSON Value
renames JSON.From Array;

Offices : JSON.JSON Array :=
[+["name" => "North American Office",
"phones" => -[1 877 787 4628,
1 866 787 4232,
1 212 620 _7300],
"email" => "info@adacore.com"],
+["name" => "European O0ffice",
"phones" => -[33 1 49 70 67 16,
33 1 49 70 05 52],
"email" => "info@adacore.com"]];

-- Equivalent old initialization code is too long to print it here
null;
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Container Aggregates 4
MD5: a2770961eab00ee297fffa280cd9a481

The 0ffices variable is supposed to contain this value:

20 Chapter 6. Container Aggregates

What's New in Ada 2022

[{"name" : "North American Office",
"phones": [18777874628,
18667874232,
1212620730017,
"email"™ : "info@adacore.com"},
{"name" : "European Office",
"phones": [33149706716,
331497005521,
"email" : "info@adacore.com"}]

6.1 References

» ARM 4.3.5 Container Aggregates?!
e Al12-0212-122

21 http://www.ada-auth.org/standards/22aarm/html/AA-4-3-5.html
22 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Al12s/AI12-0212-1.TXT

6.1. References 21

http://www.ada-auth.org/standards/22aarm/html/AA-4-3-5.html
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0212-1.TXT

What's New in Ada 2022

22 Chapter 6. Container Aggregates

CHAPTER
SEVEN

DELTA AGGREGATES

O Note

Delta aggregates are supported by
* GNAT Community Edition 2019
« GCCHY

Sometimes you need to create a copy of an object, but with a few modifications. Before Ada
2022, doing this involves a dummy object declaration or an aggregate with associations for
each property. The dummy object approach doesn't work in contract aspects or when there
are limited components. On the other hand, re-listing properties in an large aggregate can
be very tedious and error-prone. So, in Ada 2022, you can use a delta aggregate instead.

7.1 Delta aggregate for records

The delta aggregate for a record type looks like this:
type Vector is record

X, Y, Z : Float;
end record;

: constant Vector := (X => 1.0, Y => 2.0, Z => 3.0);

: constant Vector := (Point 1 with delta Z => 0.0);

The more components you have, the more you will like the delta aggregate.

7.2 Delta aggregate for arrays

You can also use delta aggregates for arrays to change elements, but not bounds. Moreover,
it only works for one-dimensional arrays of non-limited components.

type Vector 3D is array (1 .. 3) of Float;

: constant Vector 3D := [1.0, 2.0, 3.0];
: constant Vector 3D := [Point 2 with delta 3 => 0.0];

You can use parentheses for array aggregates, but you can't use square brackets for record
aggregates.

Here is the complete code snippet:

23

W @ N U A W N e

N N N N NN B B B B BB R el e
g F W N B O © ® N O U A W N B O

What's New in Ada 2022

Listing 1: main.adb
with Ada.Text I0;

procedure Main is

type Vector is record
X, Y, Z : Float;
end record;

: constant Vector := (X == 1.0, Y => 2.0, Z=> 3.0);
: constant Vector := (Point 1 with delta Z => 0.0);

type Vector_ 3D is array (1 .. 3) of Float;

: constant Vector 3D := [1.0, 2.0, 3.0];
: constant Vector 3D := [Point 2 with delta 3 => 0.0];
begin
Ada.Text IO.Put (Float'Image (Projection 1.X));
Ada.Text I0.Put (Float'Image (Projection 1.Y));
Ada.Text IO.Put (Float'Image (Projection 1.Z7Z));
Ada.Text I0.New Line;
Ada.Text I0.Put (Float'Image (Projection 2 (1)));
Ada.Text IO0.Put (Float'Image (Projection 2 (2)));
Ada.Text IO.Put (Float'Image (Projection 2 (3)));
Ada.Text I0.New Line;
end Main;

7.3 References

e ARM 4.3.4 Delta Aggregates?3
e Al12-0127-124

23 http://www.ada-auth.org/standards/22aarm/html/AA-4-3-4.html
24 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Al12s/AI12-0127-1.TXT

24 Chapter 7. Delta Aggregates

http://www.ada-auth.org/standards/22aarm/html/AA-4-3-4.html
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0127-1.TXT

© ® N o U A W N R

=R e
N = O

N o U A W N &

CHAPTER
EIGHT

TARGET NAME SYMBOL (@)

O Note

Target name symbol is supported by
* GNAT Community Edition 2019
« GCCHY

Ada 2022 introduces a new symbol, @ which can only appear on the right hand side of an
assignment statement. This symbol acts as the equivalent of the name on the left hand
side of that assignment statement. It was introduced to avoid code duplication: instead of
retyping a (potentially long) name, you can use @. This symbol denotes a constant, so you
can't pass it into [in] out arguments of a subprogram.

As an example, let's calculate some statistics for My Data array:

Listing 1: statistics.ads

package Statistics is

type Statistic is record
Count : Natural := 0
Total : Float := 0.0
end record;

’
’

My Data : array (1 .. 5) of Float := [for J in 1 .. 5 => Float (J)1;
Statistic For My Data : Statistic;
end Statistics;

Code block metadata

Project: Courses.Ada 2022 Whats New.Assignment Tagged Intro
MD5: 8ca75d894ed8ddbdb459aeelcedc427d

To do this, we loop over My Data elements:

Listing 2: main.adb
with Ada.Text I0;

procedure Main is

type Statistic is record
Count : Natural := 0;
Total : Float := 0.0;

(continues on next page)

25

© ©® N o U A W N K

L e i
o U A W N B O

What's New in Ada 2022

(continued from previous page)
end record;

: constant array (1 .. 5) of Float :=
[for Jin 1 .. 5 => Float (J)];

Statistic For My Data : Statistic;

begin
for Data of My Data loop
Statistic For My Data.Count
Statistic For My Data.Total :
end loop;

@+ 1;
@ + Data;

Ada.Text _I0.Put Line (Statistic For My Data'Image);
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Assignment Tagged 2
MD5: bl16e7al172d43547b227eb27tb994366

Runtime output

(COUNT => 5,
TOTAL => 1.50000E+01)

Each right hand side is evaluated only once, no matter how many @ symbols it contains.
Let's verify this by introducing a function call that prints a line each time it's called:

Listing 3: main.adb
with Ada.Text IO;

procedure Main is
My Data : array (1 .. 5) of Float := [for J in 1 .. 5 => Float (J)];

function To Index (Value : Positive) return Positive is
begin

Ada.Text I0.Put Line ("To Index is called.");

return Value;
end To Index;

begin
My Data (To Index (1)) :=@ ** 2 - 3.0 * @;
Ada.Text IO.Put Line (My Data'Image);

end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Assignment Tagged 3
MD5: ed946d4elb90df28fbd358d17033279d

Runtime output

To Index is called.

[-2.00000E+00, 2.00000E+00, 3.00000E+00, 4.00000E+00, 5.00000E+00]

This use of @ may look a bit cryptic, but it's the best solution that was found. Unlike other
languages (e.g., sum += Xx; in C), this approach lets you use @ an arbitrary number of times

26 Chapter 8. Target Name Symbol (@)

What's New in Ada 2022

within the right hand side of an assignment statement.

8.1 Alternatives

In C++, the previous statement could be written with a reference type (one line longer!):

auto& a = my data[to index(1)];
a=a*a-3.0%*a;

In Ada 2022, you can use a similar renaming:

declare

A renames My Data (To Index (1));
begin

A=A %2 - 3.0*A;
end;

Here we use a new short form of the rename declaration, but this still looks too heavy, and
even worse, it can't be used for discriminant-dependent components.

8.2 References

e ARM 5.2.1 Target Name Symbols?>
« Al12-0125-32%6

25 http://www.ada-auth.org/standards/22aarm/html/AA-5-2-1.html
26 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Al12s/AI12-0125-3.TXT

8.1. Alternatives 27

http://www.ada-auth.org/standards/22aarm/html/AA-5-2-1.html
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0125-3.TXT

What's New in Ada 2022

28 Chapter 8. Target Name Symbol (@)

© ©® N o U A W N R

e
= o

CHAPTER
NINE

ENUMERATION REPRESENTATION

O Note

Enumeration representation attributes are supported by
* GNAT Community Edition 2019
« GCCHY

Enumeration types in Ada are represented as integers at the machine level. But there are
actually two mappings from enumeration to integer: a literal position and a representation
value.

9.1 Literal positions

Each enumeration literal has a corresponding position in the type declaration. We can easily
obtain it from the Type'Pos (Enum) attribute.

Listing 1: main.adb

with Ada.Text I0;
with Ada.Integer Text I0;

procedure Main is
begin
Ada.Text IO.Put ("Pos(False) =");
Ada.Integer Text I0.Put (Boolean'Pos (False));
Ada.Text I0.New Line;
Ada.Text IO.Put ("Pos(True) =");
Ada.Integer Text I0.Put (Boolean'Pos (True));
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Enum Val.Pos
MD5: de7c39f83f7df231dd648606579996a8

Runtime output

Pos(False)
Pos(True)

0
1

For the reverse mapping, we use Type'Val (Int):

29

N o U oA W N e

© ® N o U A W N e

e
w N P o

What's New in Ada 2022

Listing 2: main.adb
with Ada.Text I0;

procedure Main is
begin
Ada.Text I0.Put Line (Boolean'Val (0)'Image);
Ada.Text _I0.Put Line (Boolean'Val (1)'Image);
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Enum Val.Val
MD5: 43f712d25552970bccc4c0c84089d927

Runtime output

FALSE
TRUE

9.2 Representation values

The representation value defines the internal code, used to store enumeration values in
memory or CPU registers. By default, enumeration representation values are the same as
the corresponding literal positions, but you can redefine them. Here, we created a copy of
Boolean type and assigned it a custom representation.

In Ada 2022, we can get an integer value of the representation with Type'Enum Rep (Enum)
attribute:

Listing 3: main.adb

with Ada.Text I0;
with Ada.Integer Text I0;

procedure Main is
type My _Boolean is new Boolean;
for My Boolean use (False => 3, True => 6);

begin
Ada.Text _IO.Put ("Enum Rep(False) =");
Ada.Integer Text I0.Put (My Boolean'Enum Rep (False));
Ada.Text I0.New Line;

Ada.Text_IO0.Put ("Enum Rep(True) =");
Ada.Integer Text IO.Put (My Boolean'Enum Rep (True));
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Enum Val.Enum Rep
MD5: 384ad9de7124c8131aa83ab71da58964

Runtime output

Enum_Rep(False)
Enum_Rep(True)

3
6

And, for the reverse mapping, we can use Type'Enum Val (Int):

30 Chapter 9. Enumeration representation

©W N U A W N e

e e s e
o U A W N B O

©W @ N U A W N e

T e s
o U A W N B O

What's New in Ada 2022

Listing 4: main.adb

with Ada.Text I0;
with Ada.Integer Text I0;

procedure Main is
type My _Boolean is new Boolean;
for My Boolean use (False => 3, True => 6);
begin
Ada.Text _I0.Put Line (My Boolean'Enum Val (3)'Image);
Ada.Text I0.Put Line (My Boolean'Enum Val (6)'Image);

Ada.Text IO.Put ("Pos(False) =");

Ada.Integer Text I0.Put (My Boolean'Pos (False));

Ada.Text I0.New Line;

Ada.Text IO.Put ("Pos(True) =");

Ada.Integer Text I0.Put (My Boolean'Pos (True));
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Enum Val.Enum Val
MD5: 6e06202472d4cfbea7c6846lac7afcbl

Runtime output

FALSE
TRUE
Pos(False) = 0
Pos(True) = 1

Note that the 'Val(X)/'Pos(X) behaviour still is the same.

Custom representations can be useful for integration with a low level protocol or hardware.

9.3 Before Ada 2022

This doesn't initially look like an important feature, but let's see how we'd do the equivalent
with Ada 2012 and earlier versions. First, we need an integer type of matching size, then
we instantiate Ada.Unchecked Conversion. Next, we call To Int/From Int to work with
representation values. And finally an extra type conversion is needed:

Listing 5: main.adb

with Ada.Text I0;
with Ada.Integer Text I0;
with Ada.Unchecked Conversion;

procedure Main is

type My Boolean is new Boolean;

for My Boolean use (False => 3, True => 6);
type My Boolean_Int is range 3 .. 6;

for My Boolean Int'Size use My Boolean'Size;

function To Int is new Ada.Unchecked Conversion
(My Boolean, My Boolean Int);

function From Int is new Ada.Unchecked Conversion
(My Boolean Int, My Boolean);

(continues on next page)

9.3. Before Ada 2022 31

17

19
20
21
22
23
24
25
26
27
28
29
30

What's New in Ada 2022

begin
Ada

Ada
Ada

Ada
Ada
Ada
Ada
Ada
Ada

.Text I0
Ada.
.Text IO
.Text I0
Ada.

Integer

Integer

.Text IO
.Text IO0.
.Text I0.
.Text I0.
.Text IO0.
.Text IO

end Main;

(continued from previous page)

.Put ("To Int(False) =");

~Text I0.Put (Integer (To Int (False)));
.New Line;

Put ("To Int(True) =");

~Text I0.Put (Integer (To Int (True)));
.New Line;

Put ("From Int (3) =");

Put Line (From Int (3)'Image);
New Line;

Put ("From Int (6) =");
.Put_Line (From Int (6)'Image);

Code block metadata

Project: Courses.Ada 2022 Whats New.Enum Val.Conv
MD5: 7c7624ed024b26036389f77dbd6cb109

Runtime output

To Int(False)
To Int(True)
From Int (3)

From Int (6)

Inu
o W

Even with all that, this solution doesn't work for generic formal type (because T'Size must
be a static value)!

We should note that these new attributes may already be familiar to GNAT users because
they've been in the GNAT compiler for many years.

9.4 References

« ARM 13.4 Enumeration Representation Clauses?’
* Al12-0237-128

27 http://www.ada-auth.org/standards/22aarm/html/AA-13-4.html
28 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Al12s/AI12-0237-1.TXT

32

Chapter 9. Enumeration representation

http://www.ada-auth.org/standards/22aarm/html/AA-13-4.html
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0237-1.TXT

CHAPTER
TEN

BIG NUMBERS

O Note

Big numbers are supported by
* GNAT Community Edition 2020
* GCC11
* GCC 10 (draft, no user defined literals)

Ada 2022 introduces big integers and big real types.

10.1 Big Integers

The package Ada.Numerics.Big Numbers.Big Integers contains a type Big Integer
and corresponding operations such as comparison (=, <, >, <=, >=), arithmetic (+, -, *,
/, rem, mod, abs, **), Min, Max and Greatest Common Divisor. The type also has Inte-
ger Literal and Put Image aspects redefined, so you can use it in a natural manner.

Ada.Text I0.Put Line (Big Integer'Image(2 ** 256));

115792089237316195423570985008687907853269984665640564039457584007913129639936

10.2 Tiny RSA implementation

O Note

Note that you shouldn't use Big Numbers for cryptography because it's vulnerable to
timing side-channels attacks.

We can implement the RSA algorithm?® in a few lines of code. The main operation of RSA
is (m9) mod n. But you can't just write m ** d, because these are really big numbers and
the result won't fit into memory. However, if you keep intermediate result mod n during the
m¢ calculation, it will work. Let's write this operation as a function:

Listing 1: power_mod.ads

with Ada.Numerics.Big Numbers.Big Integers;
use Ada.Numerics.Big Numbers.Big Integers;

(continues on next page)

29 https://en.wikipedia.org/wiki/RSA_(cryptosystem)

33

https://en.wikipedia.org/wiki/RSA_(cryptosystem)

o v &~ w

© ® N o U A W N e

[T T T S R T = T
P O © ® W o U A W N = O

What's New in Ada 2022

(continued from previous page)

-- Calculate M ** D mod N

function Power Mod (M, D, N : Big Integer) return Big Integer;

Listing 2: power_mod.adb

function Power Mod (M, D, N : Big Integer) return Big Integer is

function Is 0dd (X : Big Integer) return Boolean is
(X mod 2 /= 0);

Result : Big Integer := 1;

Exp : Big Integer := D;

Mult : Big Integer := M mod N;
begin

while Exp /= 0 loop
-- Loop invariant is Power Mod'Result = Result * Mult**Exp mod N
if Is 0dd (Exp) then
Result := (Result * Mult) mod N;
end if;

Mult := Mult ** 2 mod N;

Exp := Exp / 2;
end loop;

return Result;
end Power Mod;

Code block metadata

Project: Courses.Ada 2022 Whats New.Big Integers
MD5: 8ade78366bf7c98090ae3219a9830cf9

Let's check this with the example from Wikipedia3°. In that example, the public key is (n
= 3233, e = 17) and the message is m = 65. The encrypted message is m¢ mod n = 651/
mod 3233 = 2790 = c.

Ada.Text I0.Put Line (Power Mod (M => 65, D => 17, N => 3233)'Image);
2790

To decrypt it with the public key (n = 3233, d = 413), we need to calculate c® mod n =
2790413 mod 3233:

Ada.Text I0.Put Line (Power Mod (M => 2790, D => 413, N => 3233)'Image);
65

So 65 is the original message m. Easy!

Here is the complete code snippet:

Listing 3: main.adb

with Ada.Text I0;
with Ada.Numerics.Big Numbers.Big Integers;
use Ada.Numerics.Big Numbers.Big Integers;

(continues on next page)

30 https://en.wikipedia.org/wiki/RSA_(cryptosystem)

34 Chapter 10. Big Numbers

https://en.wikipedia.org/wiki/RSA_(cryptosystem)

© ©® N o U A

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

What's New in Ada 2022

(continued from previous page)

procedure Main is
-- Calculate M ** D mod N
function Power Mod (M, D, N : Big Integer) return Big Integer is

function Is 0dd (X : Big Integer) return Boolean is
(X mod 2 /= 0);

Result : Big Integer := 1;
Exp : Big Integer := D;
Mult : Big Integer := M mod N;

begin
while Exp /= 0 loop
-- Loop invariant is Power Mod'Result = Result * Mult**Exp mod N
if Is _0dd (Exp) then
Result := (Result * Mult) mod N;
end if;

Mult := Mult ** 2 mod N;
Exp := Exp / 2;
end loop;

return Result;
end Power Mod;

begin
Ada.Text I0.Put Line (Big Integer'Image (2 ** 256));
-- Encrypt:
Ada.Text I0.Put Line (Power Mod (M => 65, D => 17, N => 3233)'Image);
-- Decrypt:

Ada.Text I0.Put Line (Power Mod (M => 2790, D => 413, N => 3233)'Image);
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Big Numbers Tiny RSA
MD5: 298c4a82ceafba9654d41b3a9762927d

Runtime output

115792089237316195423570985008687907853269984665640564039457584007913129639936
2790
65

10.3 Big Reals

In addition to Big_ Integer, Ada 2022 provides Big Reals>'.

10.4 References

« ARM A.5.6 Big Integers3?
« ARM A.5.7 Big Reals33

31 http://www.ada-auth.org/standards/22aarm/html/AA-A-5-7.html
32 http://www.ada-auth.org/standards/22aarm/html/AA-A-5-6.html
33 http://www.ada-auth.org/standards/22aarm/html/AA-A-5-7.html

10.3. Big Reals 35

http://www.ada-auth.org/standards/22aarm/html/AA-A-5-7.html
http://www.ada-auth.org/standards/22aarm/html/AA-A-5-6.html
http://www.ada-auth.org/standards/22aarm/html/AA-A-5-7.html

What's New in Ada 2022

¢ Al12-0208-134

34 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Al12s/AI12-0208-1.TXT

36 Chapter 10. Big Numbers

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0208-1.TXT

CHAPTER
ELEVEN

INTERFACING C VARIADIC FUNCTIONS

O Note

Variadic convention is supported by
* GNAT Community Edition 2020
* GCC11

In C, variadic functions®> take a variable number of arguments and an ellipsis as the last
parameter of the declaration. A typical and well-known example is:

int printf (const char* format, ...);

Usually, in Ada, we bind such a function with just the parameters we want to use:

procedure printf double
(format : Interfaces.C.char array;
value : Interfaces.C.double)
with Import,
Convention = (C,
External Name => "printf";

Then we call it as a normal Ada function:

printf double (Interfaces.C.To C ("Pi=%f"), Ada.Numerics.m);
Unfortunately, doing it this way doesn't always work because some ABI*®s use different
calling conventions for variadic functions. For example, the AMD64 ABI37 specifies:

* %rax — with variable arguments passes information about the number of vector reg-
isters used;

* %XxmmO—%xmml — used to pass and return floating point arguments.
This means, if we write (in C):
printf("sd", 5);

The compiler will place 0 into %rax, because we don't pass any float argument. But in Ada,
if we write:

procedure printf int
(format : Interfaces.C.char array;
value : Interfaces.C.int)

(continues on next page)

35 https://en.cppreference.com/w/c/variadic
36 https://en.wikipedia.org/wiki/Application_binary_interface
37 https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf

37

https://en.cppreference.com/w/c/variadic
https://en.wikipedia.org/wiki/Application_binary_interface
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf

© ©® N o U A W N R

T e
A W N = O

What's New in Ada 2022

(continued from previous page)

with Import,
Convention = (C,
External Name => "printf";

printf _int (Interfaces.C.To C ("d=%d"), 5);

the compiler won't use the %rax register at all. (You can't include any float argument be-
cause there's no float parameter in the Ada wrapper function declaration.) As result, you
will get a crash, stack corruption, or other undefined behavior.

To fix this, Ada 2022 provides a new family of calling convention names — C Variadic N:

The convention C Variadic n is the calling convention for a variadic C function
taking n fixed parameters and then a variable number of additional parameters.

Therefore, the correct way to bind the printf function is:

procedure printf int
(format : Interfaces.C.char_array;

value : Interfaces.C.int)
with Import,
Convention => C Variadic 1,

External Name => "printf";

And the following call won't crash on any supported platform:

printf int (Interfaces.C.To C ("d=%d"), 5);

Without this convention, problems cause by this mismatch can be very hard to debug. So,
this is a very useful extension to the Ada-to-C interfacing facility.

Here is the complete code snippet:

Listing 1: main.adb

with Interfaces.C;
procedure Main is

procedure printf int
(format : Interfaces.C.char _array;

value : Interfaces.C.int)
with Import,
Convention => C Variadic 1,

External Name => "printf";
begin

printf_int (Interfaces.C.To C ("d=%d"), 5);
end Main;

Code block metadata

Project: Courses.Ada 2022 Whats New.Variadic Import
MD5: 94515f55a93f27e4f4ecec31256645d9

11.1 References

« ARM B.3 Interfacing with C and C++38

38 http://www.ada-auth.org/standards/22aarm/html/AA-B-3.html

38 Chapter 11. Interfacing C variadic functions

http://www.ada-auth.org/standards/22aarm/html/AA-B-3.html

What's New in Ada 2022

¢ Al12-0028-13°

39 http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Al12s/AI12-0028-1.TXT

11.1. References 39

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/AI12s/AI12-0028-1.TXT

	Introduction
	References

	'Image attribute for any type
	'Image attribute for a value
	'Image attribute for any type
	References

	Redefining the 'Image attribute
	What's the Root_Buffer_Type?
	Outdated draft implementation
	References

	User-Defined Literals
	Turn Ada into JavaScript
	References

	Advanced Array Aggregates
	Square brackets
	Iterated Component Association
	References

	Container Aggregates
	References

	Delta Aggregates
	Delta aggregate for records
	Delta aggregate for arrays
	References

	Target Name Symbol (@)
	Alternatives
	References

	Enumeration representation
	Literal positions
	Representation values
	Before Ada 2022
	References

	Big Numbers
	Big Integers
	Tiny RSA implementation
	Big Reals
	References

	Interfacing C variadic functions
	References

